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ABSTRACT: Several limited-area 80-member ensemble Kalman filter (EnKF) data assimilation systems with 15-km horizontal
grid spacing were run over a computational domain spanning the conterminous United States (CONUS) for a 4-week period.
One EnKF employed continuous cycling, where the prior ensemble was always the 1-h forecast initialized from the previous
cycle’s analysis. In contrast, the other EnKFs used a partial cycling procedure, where limited-area states were discarded after
12 or 18 h of self-contained hourly cycles and reinitialized the next day from global model fields. “Blended” states were also con-
structed by combining large scales from global ensemble initial conditions (ICs) with small scales from limited-area continuously
cycling EnKF analyses using a low-pass filter. Both the blended states and EnKF analysis ensembles initialized 36-h, 10-member
ensemble forecasts with 3-km horizontal grid spacing. Continuously cycling EnKF analyses initialized ∼1–18-h precipitation fore-
casts that were comparable to or somewhat better than those with partial cycling EnKF ICs. Conversely, ∼18–36-h forecasts with
partial cycling EnKF ICs were comparable to or better than those with unblended continuously cycling EnKF ICs. However,
blended ICs yielded ∼18–36-h forecasts that were statistically indistinguishable from those with partial cycling ICs. ICs that more
closely resembled global analysis spectral characteristics at wavelengths. 200 km, like partial cycling and blended ICs, were asso-
ciated with relatively good ∼18–36-h forecasts. Ultimately, findings suggest that EnKFs employing a combination of continuous
cycling and blending can potentially replace the partial cycling assimilation systems that currently initialize operational limited-
area models over the CONUS without sacrificing forecast quality.

SIGNIFICANCE STATEMENT: Numerical weather prediction models (i.e., weather models) are initialized through a pro-
cess called data assimilation, which combines real atmospheric observations with a previous short-term weather model forecast
using statistical techniques. The overarching data assimilation strategy currently used to initialize operational regional weather
models over the United States has several disadvantages that ultimately limit progress toward improving weather model fore-
casts. Thus, we suggest an alternative data assimilation strategy be adopted to initialize a next-generation, high-resolution
(∼3 km) probabilistic forecast system currently being developed. This alternative approach preserves forecast quality while fos-
tering a framework that can accelerate weather model improvements, which in turn will lead to better weather forecasts.
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1. Introduction

Limited-area convection-allowing ensembles (CAEs) have
become increasingly popular over the past decade and are now
operational at many numerical weather prediction (NWP) centers
(e.g., Gebhardt et al. 2011; Peralta et al. 2012; Hagelin et al. 2017;
Raynaud and Bouttier 2017; Klasa et al. 2018; Roberts et al.
2020). While CAEs can be initialized by simply downscaling oper-
ationally available coarse-resolution analyses and short-term fore-
casts onto the computational domain (e.g., Xue et al. 2007; Kong
et al. 2008, 2009; Tennant 2015; Clark 2017; Schellander-Gorgas
et al. 2017; Cafaro et al. 2019; Porson et al. 2019), as data assimila-
tion (DA) methods have matured and computing has increased,
CAE initial conditions (ICs) are now commonly produced by cus-
tomized limited-area DA systems explicitly designed for CAE ini-
tialization (e.g., Jones and Stensrud 2012; Schumacher and Clark

2014; Schwartz et al. 2014, 2015, 2021; Harnisch and Keil 2015;
Wheatley et al. 2015; Dowell et al. 2016, 2021, manuscript submit-
ted toWea. Forecasting; Raynaud and Bouttier 2016; Schraff et al.
2016; Johnson and Wang 2017; Gustafsson et al. 2018; Keresturi
et al. 2019; Gasperoni et al. 2020; Johnson et al. 2020; COSMO
2021).

Over the conterminous United States (CONUS), NCEP’s oper-
ational CAE, the High Resolution Ensemble Forecast (HREF;
Roberts et al. 2020), currently lacks its own analysis system and
instead is an ad hoc aggregation of independent deterministic con-
vection-allowing model forecasts. However, within the Unified
Forecast System framework, NCEP intends to replace the HREF
with a Rapid Refresh Forecast System (RRFS; Carley et al. 2021)
initialized from its own ensemble-based limited-area analyses.
Thus, configurations for the RRFS’s DA system must be carefully
considered.

One design choice concerns DA cycling methodology, as
two overarching strategies are possible: continuous cycling and
partial cycling. In continuous cycling, the short-term forecastCorresponding author: Craig S. Schwartz, schwartz@ucar.edu
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initialized from the previous cycle’s analysis always serves as the
background for the current analysis cycle, relegating the role of
external models to supplying boundary conditions and yielding
a self-contained limited-area DA system. Conversely, in partial
cycling, limited-area analysis cycles are periodically discarded
and replaced with coarser-resolution external analyses or short-
term forecasts typically provided by a global NWPmodel.

Although CAE forecast sensitivity to cycling strategy has
not been systematically examined, prior research at convec-
tion-parameterizing resolutions indicated partial cycling
three-dimensional variational (3DVAR; e.g., Courtier et al.
1994; Lorenc et al. 2000) DA systems initialized better deter-
ministic forecasts than continuously cycling 3DVAR DA sys-
tems (e.g., Rogers et al. 2009; Hsiao et al. 2012; Benjamin
et al. 2016). While reasons for these findings are not
completely understood, one possibility is that continuously
cycling DA systems poorly represent large-scale features that
may exert important controls on forecast evolution (e.g., Dur-
ran and Gingrich 2014; Durran and Weyn 2016; Weyn and
Durran 2017), whereas partial cycling DA systems might pos-
sess smaller large-scale errors because they ingest global fields
with a “better longwave representation not available via
regional data assimilation unable to use the full global set of
observations” (Benjamin et al. 2016). Another possible rea-
son for the historical deficiencies of continuously cycling sys-
tems may be related to biases that can accumulate throughout
continuous DA cycles; these biases likely arise from imperfect
physical parameterizations and can eventually degrade analy-
ses and subsequent forecasts. In contrast, the act of periodi-
cally replacing limited-area states with comparatively less
biased global fields may limit how much bias can accumulate
in partial cycling DA systems. For example, Hsiao et al.
(2012) demonstrated that partial cycling 3DVAR analyses
were substantially less biased than continuously cycling
3DVAR analyses and initialized commensurately better fore-
casts over Taiwan and its surroundings, and several studies
employing continuous cycling over the CONUS and adjacent
areas also documented bias accumulations (e.g., Torn and
Davis 2012; Romine et al. 2013; Cavallo et al. 2016; Wong
et al. 2020; Poterjoy et al. 2021).

Given the collective findings questioning the suitability of
continuous cycling, NCEP’s operational limited-area North

American Mesoscale Forecast System (NAM), Rapid Refresh
(RAP; Benjamin et al. 2016), and High-Resolution Rapid
Refresh (HRRR; Benjamin et al. 2016; Dowell et al. 2021,
manuscript submitted to Wea. Forecasting) models, as well as
NOAA’s experimental real-time CAEs, the HRRR-Ensem-
ble (HRRRE; Dowell et al. 2016, 2021, manuscript submitted
to Wea. Forecasting) and “Warn-on-Forecast” system (Sten-
srud et al. 2009, 2013; Wheatley et al. 2015; Jones et al. 2016),
all employ partial cycling.1 In addition, several research stud-
ies effectively used partial cycling approaches to initialize
convection-allowing model forecasts over the CONUS (e.g.,
Schumacher and Clark 2014; Johnson et al. 2015, 2020; John-
son and Wang 2017; Gasperoni et al. 2020).

However, partial cycling DA systems have several limita-
tions. For instance, while continuous cycling facilitates a
straightforward diagnosis of model biases—such that they can
be remedied—forecast errors in partial cycling systems reflect
both the external and limited-area models, increasing the dif-
ficulty of pinpointing error sources or masking errors alto-
gether (e.g., Poterjoy et al. 2021). Additionally, partial cycling
DA system performance may depend on both characteristics
of the external fields and frequency with which they are
ingested, introducing extra sources of potential sensitivity
compared to continuously cycling DA systems. Furthermore,
partial cycling workflows can be complicated and require
simultaneous execution of two limited-area DA systems,
including a “primary” system and a “parallel” or “catch-up”
system that essentially handles the periodic ingestion of exter-
nal fields (e.g., Djalalova et al. 2016; Hu et al. 2017). Perhaps
recognizing these shortcomings, Rogers et al. (2009) noted,

TABLE 1. WRF Model settings for all experiments.

Parameter WRF Model setting

Model version Version 3.9.1.1 of the Advanced Research version of WRF
Horizontal grid spacing 15 and 3 km in the outer and inner domains, respectively
Time step 60 and 12 s in the 15- and 3-km domains, respectively
Number of vertical levels 51 (based on the Rapid Refresh model; Benjamin et al. 2016)
Model top 15 hPa
Microphysics parameterization Thompson (Thompson et al. 2008)
Longwave and shortwave radiation

parameterizations
Rapid Radiative Transfer Model for Global Climate Models (RRTMG) with

ozone and aerosol climatologies (Mlawer et al. 1997; Iacono et al. 2008;
Tegen et al. 1997)

Planetary boundary layer parameterization Mellor–Yamada–Janjić (MYJ) (Mellor and Yamada 1982; Janjić 1994, 2002)
Land surface model Noah (Chen and Dudhia 2001)
Cumulus parameterization Tiedtke (15-km domain only; Tiedtke 1989; Zhang et al. 2011)

1 Notably, operational European limited-area models, including
CAEs, are initialized from continuously cycling DA systems (e.g.,
Schraff et al. 2016; Hagelin et al. 2017; Raynaud and Bouttier
2017; Keresturi et al. 2019; COSMO 2021). Although it is unclear
whether this approach is optimal given the absence of studies
intercomparing forecasts initialized from partial and continuously
cycling DA systems over Europe, it is possible that continuously
cycling DA systems spanning relatively large geographic areas like
the CONUS may be more prone to the issue of bias accumulation
than continuously cycling DA systems over comparatively small
European domains, where more assertive lateral boundary condi-
tions (e.g., Warner et al. 1997) may limit bias accumulations.
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“It should be pointed out that the use of partial cycling in the
[NAM DA system] is considered a temporary solution,” and
overall, relative to partial cycling DA systems, continuously
cycling DA systems permit more rapid progress toward
improving NWP models and are easier to maintain and
upgrade. Accordingly, it would be preferable to initialize the
future RRFS with a continuously cycling DA system, so long
as it produces similar quality forecasts as other potential ini-
tialization methods like partial cycling.

Thus, for RRFS development purposes, it seems sensible to
rigorously revisit partial versus continuous cycling for limited-
area modeling applications, especially with modern DA sys-
tems incorporating flow-dependent background error cova-
riances like the ensemble Kalman filter (EnKF; Evensen
1994; Houtekamer and Zhang 2016), contrasting previous sys-
tematic studies concerning partial and continuous cycling that
employed inferior 3DVAR DA methodologies (e.g., Rogers
et al. 2009; Hsiao et al. 2012; Benjamin et al. 2016). Moreover,
limited-area continuously cycling EnKFs can perform well
and initialize better convection-allowing model forecasts than
downscaled global analyses over the CONUS (e.g., Schwartz
and Liu 2014; Schwartz 2016), including for CAE applications
(Schwartz et al. 2021). Finally, Schumacher and Clark (2014)
suggested partial and continuously cycling EnKFs yielded simi-
lar caliber CAE forecasts, which is encouraging, but their study
was limited by its small sample size of just 16 assimilation cycles
over 4 days and specific experimental design choices, like initial-
izing their partial cycling EnKF with randomly perturbed 36-h
forecasts rather than flow-dependent analyses or shorter-term
forecasts. Ultimately, it remains unclear whether continuously
cycling EnKFs can systematically initialize comparable quality
CAE forecasts as partial cycling EnKFs, as there has yet to be a
study devoted to such an investigation.

To address this uncertainty about cycling strategy, this work
directly compares CAE forecasts initialized from partial and con-
tinuously cycling EnKF DA systems over the CONUS for a 4-
week period. In addition, this study investigates another method
for CAE forecast initialization that, like partial cycling, entrains
external information into limited-area ICs. Specifically, CAE
forecasts were also initialized from “blended” states, where small
scales provided by continuously cycling EnKF analyses were
combined with large scales provided by global ensemble ICs.
Our experiments offer insights about CAE ICs and guidance for
how future CAEs like the RRFS should be initialized.

2. Model and data assimilation configurations

CAE forecast sensitivity to EnKF cycling procedure (i.e.,
partial or continuous cycling) was explored through several
experiments. The following descriptions about experimental
model and EnKF settings are brief, as configurations were
identical to those described by Schwartz et al. (2021; hereafter
S21). Despite this parallel, the current study fundamentally
differs from S21, who focused on comparing CAE forecasts
initialized from continuously cycling 15- and 3-km EnKFs and
did not intercompare forecasts initialized from partial and
continuously cycling EnKFs.

a. Model configurations

All EnKF experiments used identical model configurations
as S21 (Table 1). Specifically, version 3.9.1.1 of the Advanced
Research version of the Weather Research and Forecasting
(WRF) Model (Skamarock et al. 2008; Powers et al. 2017)
produced all forecasts over a nested computational domain
with 15-km horizontal grid spacing in the outer domain and 3-
km horizontal grid spacing in the nest (Fig. 1). The same phys-
ics options (Table 1) were used on both domains, except
cumulus parameterization was not employed on the convec-
tion-allowing 3-km grid. All ensemble members used identical
physical parameterizations.

b. EnKF configurations

Both the partial and continuously cycling EnKFs had iden-
tical configurations to the 15-km continuously cycling EnKF
described by S21, who thoroughly documented and justified
their settings (summarized in Table 2). Moreover, S21 showed
their 15-km EnKF DA system had acceptable spread error
statistics (e.g., Houtekamer et al. 2005), was stable from a cli-
matological perspective, and initialized better short-term
CAE precipitation forecasts than ICs provided by an opera-
tional global ensemble.

Specifically, using the Data Assimilation Research Testbed
(DART; Anderson et al. 2009) software, 80-member EnKF
analyses were produced hourly (i.e., hourly cycles) on solely
the 15-km domain (Fig. 1); the 3-km domain was removed
during 1-h, 80-member ensemble forecasts between EnKF
analyses. As in S21, these 1-h ensemble forecasts employed
perturbed lateral boundary conditions (LBCs) that were con-
structed by adding random, correlated, Gaussian noise with
zero mean (e.g., Barker 2005; Torn et al. 2006) to Global
Forecast System (GFS) analyses and forecasts; this approach
was chosen for its simplicity and is commonly used to provide

FIG. 1. Computational domain. Horizontal grid spacing was
15 km in the outer domain (415 3 325 points) and 3 km in the
nest (1581 3 986 points). Objective precipitation verification only
occurred over the red shaded region of the 3-km domain (CONUS
east of 1058W).
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LBCs for limited-area EnKFs (e.g., Torn and Davis 2012;
Romine et al. 2013; Schumacher and Clark 2014; Johnson et al.
2015; Schwartz et al. 2015, 2020; Zhu et al. 2019). Whereas S21
produced both 15- and 3-km EnKF analyses, we only produced
the more affordable 15-km analyses to enable several 4-week
experiments (section 3) given finite computing resources.
Although future operational CAEs will likely be initialized
from convection-allowing DA systems, as we further discuss in
section 6, higher-resolution DA systems would probably not
provide different conclusions about the comparative perfor-
mance of partial and continuously cycling DAmethodologies.

The EnKFs used sampling error correction (Anderson 2012)
and covariance localization to mitigate spurious correlations, and
EnKF spread was maintained with posterior inflation (Table 2).
Approximately 30000–100000 conventional observations were
assimilated each cycle (Table 2), all assumed to be valid at the
analysis time. Radar-based observations were not assimilated. Fur-
thermore, as in S21, radiance observations were not assimilated.
There are two reasons for this choice: 1) consistency with S21;
and 2) although assimilating radiances has shown promise for
improving forecasts of specific events over small portions of the
CONUS (e.g., Zou et al. 2011; Zhang et al. 2019; Jones et al. 2020),
radiance observations historically have yielded only small impacts
over the CONUS in systematic studies with limited-area DA sys-
tems (Lin et al. 2017a,b; Zhu et al. 2019), likely because of ample
conventional observation coverage over the CONUS. Table 3 of
S21 provides a complete list of assimilated observations.

Following S21, NCEP’s operational Gridpoint Statistical
Interpolation (GSI) DA system (Kleist et al. 2009; Shao et al.
2016) provided observation operators, performed observation
quality control, thinned aircraft and satellite-tracked wind
observations (Table 2), specified observation time windows,
and assigned observation errors. GSI’s observation-related
output was then ingested into DART.

It is important to note that specific DA configurations (e.g.,
Table 2) were determined while developing the continuously
cycling EnKF, and optimal settings for the partial cycling
EnKFs may differ. Thus, a hypothetical operational partial
cycling EnKF that has been exhaustively tuned may perform
better than our partial cycling EnKFs. Nonetheless, fine-tuning
partial cycling DA parameters is beyond the scope of this study,
and all EnKFs used identical configurations to attribute differ-
ences between partial and continuously cycling EnKF analyses
and subsequently initialized CAE forecasts to the external fields
introduced during partial cycling EnKF initialization.

3. Experimental design

As in S21, EnKF experiments were performed between
23 April and 20 May 2017. This period featured several severe
weather and heavy precipitation events over the CONUS.

a. Continuously cycling EnKF

The 80-member continuously cycling 15-km EnKF in S21 and
used again here (“CCEnKF”; Table 3; Fig. 2) was initialized by
downscaling the 0000 UTC 23 April 2017 0.258 GFS analysis
onto the 15-km domain (Fig. 1) and adding random, correlated,
Gaussian noise with zero mean, akin to the method for generat-
ing perturbed LBCs (section 2b). This randomly generated
ensemble served as the prior (before assimilation) ensemble for
the first EnKF analysis, and the posterior (after assimilation)
ensemble initialized a 1-h, 80-member ensemble forecast that
became the prior for EnKF DA at 0100 UTC 23 April 2017.

Thereafter, continuous analysis–forecast cycles with a 1-h
period were performed until 0000 UTC 20 May 2017 (inclu-
sive; 649 hourly DA cycles). Land surface and microphysics
states freely evolved for each member throughout the 4-week

TABLE 2. Summary of partial and continuously cycling EnKF configurations. See S21 for more details and justifications for these settings.

Parameter Setting

EnKF algorithm Ensemble adjustment Kalman filter (EAKF; Anderson 2001, 2003; Anderson
and Collins 2007)

Ensemble size 80 members
Cycling period 1 h
Updated WRF Model variables Zonal and meridional wind components; perturbation geopotential height,

potential temperature, and dry surface pressure; and water vapor, graupel,
snow, and rain mixing ratios

Localization function Eq. (4.10) from Gaspari and Cohn (1999)
Horizontal localization full width 1280 km
Vertical localization full width 1.0 scale height
Inflation method Posterior relaxation-to-prior-spread (RTPS; Whitaker and Hamill 2012)
Inflation factor 1.06
Lateral boundary condition perturbations Random perturbations based on Gaussian noise added to GFS analyses and

forecasts
Assimilated observations Rawinsonde, aircraft, wind profiler, satellite-tracked wind, global positioning

system radio occultation (GPSRO), and surface observations
Moisture observations Assimilated as relative humidity
Horizontal thinning for aircraft and

satellite-tracked wind observations
30 km

Vertical thinning for aircraft and satellite-
tracked wind observations

25 hPa
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cycling period, and sea surface temperatures were updated
daily from NCEP’s 0.128 analyses (e.g., Gemmill et al. 2007).
S21 showed it took approximately two days for the EnKF to
spin up from and effectively “forget” about the initially speci-
fied random noise (i.e., develop flow-dependent structures
consistent with the WRFModel climate).

Members 1–10 from 0000 UTC posterior ensembles initial-
ized 36-h forecasts over the nested domain (Fig. 1) between
25 April and 20 May 2017 (inclusive; 26 forecasts); the 10-
member ensemble forecasts on the 3-km grid were the CAE
forecasts of interest. Because only 15-km EnKF analyses were
produced, the 3-km nest was initialized by downscaling 15-km
posterior ensembles onto the 3-km grid. Although 80-member
EnKF analyses were available, computing constraints limited
CAE forecasts to just 10 members, which is sufficient to pro-
vide skillful and valuable probabilistic forecasts of precipita-
tion and severe weather-related quantities (e.g., Clark et al.
2011, 2018; Schwartz et al. 2014) and is similar in size to the
HRRRE and HREF. For these 36-h forecasts, LBCs provided
by perturbation members 1–10 from NCEP’s operational
Global Ensemble Forecast System (GEFS; Zhou et al. 2017)
with 0.58 horizontal grid spacing were applied to the 15-km
domain, which in turn provided LBCs for the 3-km nest.

b. Primary partial cycling EnKF

The primary partial cycling EnKF (“PC12z”; Table 3; Fig. 2)
was initialized daily at 1200 UTC between 24 April and 19
May 2017 (inclusive). First, deterministic 1200 UTC 0.258
GFS analyses were interpolated onto the 15-km computa-
tional domain (Fig. 1). Then, flow-dependent perturbations of
horizontal winds, temperature, water vapor mixing ratio, and
surface pressure were derived from global, 6-h, 80-member
ensemble forecasts valid at 1200 UTC; these 6-h global
ensemble forecasts had T574 resolution (∼34 km) and were

initialized from operational EnKF analyses produced within
NCEP’s Global Data Assimilation System (GDAS; e.g.,
Whitaker and Hamill 2002; Whitaker et al. 2008; Wang et al.
2013). Finally, the GDAS-EnKF perturbations2 were interpo-
lated onto the 15-km grid and added to downscaled GFS
analyses to construct 80-member ensembles that initialized the
limited-area partial cycling EnKF. As the mean of GDAS-EnKF
perturbations was zero, ensemble mean states at 1200 UTC in
the partial cycling EnKF were identical to GFS analyses. There-
fore, the partial cycling EnKF was influenced by radiance meas-
urements assimilated within the GDAS, despite not assimilating
these measurements directly. Moreover, in GDAS analyses,
observations located outside the regional domain can influence
locations within the regional domain, meaning 1200 UTC partial
cycling EnKF states reflected observations outside the regional
domain. Thus, from an observational perspective, the continu-
ously cycling EnKF was somewhat disadvantaged with respect to
the partial cycling EnKF, as the former was unable to implicitly
benefit from additional observations through global analyses,
aside from LBC influences.

Constructing initial ensembles by adding perturbations
derived from GDAS-EnKF forecasts to GFS analyses is simi-
lar to HRRRE and GEFS initialization procedures (e.g.,
Zhou et al. 2017; Dowell et al. 2021, manuscript submitted to
Wea. Forecasting). Additionally, perturbations were derived
from 6-h ensemble forecasts, rather than from analysis ensem-
bles, in recognition that using short-term forecasts to initialize
partial cycling DA systems is common (e.g., Rogers et al.
2009; Benjamin et al. 2016; Djalalova et al. 2016; Hu et al.
2017; Wu et al. 2017; Dowell et al. 2021, manuscript submitted
to Wea. Forecasting) given operational constraints sometimes

TABLE 3. Summary of experiments. Also see Fig. 2.

Experiment name Description

CCEnKF Continuously cycling EnKF initialized at 0000 UTC 23 Apr 2017 by adding random noise to GFS
analyses. Hourly assimilation cycles were then performed until 0000 UTC 20 May 2017 (inclusive), and
0000 UTC analysis ensembles initialized 36-h, 10-member CAE forecasts.

PC12z Partial cycling EnKF initialized daily at 1200 UTC between 24 Apr and 19 May 2017 (inclusive) by
recentering perturbations derived from 6-h GDAS-EnKF forecasts about 1200 UTC GFS analyses.
The perturbations were inflated according to Fig. 3. Hourly self-contained assimilation cycles were
then performed for 12 h until 0000 UTC, and 0000 UTC analysis ensembles initialized 36-h, 10-
member CAE forecasts. After CAE forecast initialization, limited-area cycles were discarded.

PC06z Exactly the same as PC12z, except the partial cycling EnKF was initialized 6 h earlier at 0600 UTC daily
by recentering inflated perturbations derived from 6-h GDAS-EnKF forecasts about 0600 UTC GFS
analyses. Hourly self-contained assimilation cycles were then performed for 18 h until 0000 UTC, and
0000 UTC analysis ensembles initialized 36-h, 10-member CAE forecasts.

PC12z_soil Exactly the same as PC12z, except initial land surface states at 1200 UTC were taken from 1200 UTC
continuously cycling EnKF (CCEnKF) members.

CCEnKF_blend Exactly the same as CCEnKF, except at 0000 UTC, small scales from CCEnKF analysis members 1–10 were
blended with large scales from corresponding GEFS IC members 1–10 using a 960-km filter cutoff
(Fig. 4). These blended ICs then initialized 36-h, 10-member CAE forecasts. Blending did not impact
continuous EnKF assimilation cycles.

GEFS 0000 UTC GEFS ICs were downscaled onto the computational domain to initialize 36-h, 10-member
CAE forecasts.

2 Perturbations were defined with respect to the ensemble mean.
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requiring a modeling system to start before global ensemble
analyses are available (e.g., Zhou et al. 2017).

The above procedure produced prior ensembles for 1200
UTC EnKF analyses, and 1200 UTC posterior ensembles ini-
tialized 1-h, 80-member ensemble forecasts that became pri-
ors for EnKF DA at 1300 UTC. Thereafter, self-contained
hourly assimilation cycles were performed until 0000 UTC
(i.e., 12 h of self-contained cycles) using identical configura-
tions and assimilating the same observations as the continu-
ously cycling EnKF (Table 2), with 1-h, 15-km, 80-member
ensemble forecasts between analyses.

As with the continuously cycling EnKF, 0000 UTC poste-
rior ensembles initialized 36-h, 10-member CAE forecasts
between 25 April and 20 May 2017 (inclusive) that employed
GEFS LBCs. After these CAE forecasts were initialized,
0000 UTC posterior ensembles were discarded and the partial
cycling EnKF was initialized anew the next day (e.g., Fig. 2).
Performing 12 h of self-contained cycles before initializing
forecasts of interest was similar to Hsiao et al. (2012), the
RAP (Benjamin et al. 2016; Hu et al. 2017), and previous ver-
sions of the NAMDA system (Wu et al. 2017).

c. Intricacies of partial cycling initialization: Additional
experiments and discussion

Partial cycling EnKF initialization has several intricacies
and subjectivities that warrant discussion and motivated addi-
tional experimentation. Notably, the following issues are irrel-
evant for continuously cycling EnKFs, illustrating how partial

cycling EnKFs have more sources of potential sensitivity than
continuously cycling EnKFs.

1) PARTIAL CYCLING DURATION

CAE forecasts initialized from partial cycling EnKFs could be
sensitive to self-contained cycling length, and previous partial
cycling systems employed between 6 and 24 h of self-contained
cycles before initializing forecasts of interest (e.g., Johnson et al.
2015; Wu et al. 2017; Gasperoni et al. 2020). As determining the
optimal self-contained cycling length for CAE forecast initializa-
tion was not a primary goal of this study, we did not experiment
with a wide range of self-contained cycling lengths.

Nonetheless, some of our results suggested performing only
12 h of self-contained cycles before initializing CAE forecasts
may have been insufficient. Therefore, we initialized another
partial cycling EnKF at 0600 UTC daily between 24 April and
19 May 2017 (inclusive) that produced 18 h of self-contained
cycles until 0000 UTC, when posterior ensembles initialized
36-h, 10-member CAE forecasts (“PC06z”; Table 3; Fig. 2).
Aside from their initialization times, PC06z and PC12z were
identically configured and used the same GFS/GDAS-EnKF
initialization method (e.g., section 3b).

2) INITIAL ENSEMBLE SPREAD

Six-hour GDAS-EnKF forecast spread is not tuned for lim-
ited-area WRF Model applications and is potentially insuffi-
cient at low levels (e.g., Zhou et al. 2017; Gehne et al. 2019).

FIG. 2. Schematic diagram of CCEnKF (top), PC12z (middle), and PC06z (bottom) cycling methodologies. Solid verti-
cal lines with filled black circles represent EnKF analyses, and red denotes CAE forecast initialization times. Priors
for EnKF analyses at 0600 and 1200 UTC in PC06z and PC12z, respectively, were 6-h GDAS-EnKF forecast perturba-
tions recentered about GFS analyses.
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Thus, following the HRRRE, 6-h GDAS-EnKF forecast per-
turbations were inflated while initializing all partial cycling
EnKFs (Table 3), with inflation factors linearly increasing
from 1.0 (no inflation) at model level 26 to 2.0 at the lowest
model level (Fig. 3). Although HRRRE developers found
these tunings improved HRRRE forecast spread–error statis-
tics compared to applying no inflation, these specific inflation
factors may not be optimal for our model and DA settings
(section 2). However, the ideal external ensemble spread for
partial cycling EnKFs that eventually initialize CAE forecasts
cannot be determined a priori, and finding this optimum is a
potentially expensive tuning exercise that is well outside our
scope and reflects one of the many challenges of working with
two modeling systems in partial cycling EnKFs.

3) INITIAL LAND SURFACE STATES

There are multiple options for initializing land surface
states (e.g., soil temperature and moisture) in partial cycling
DA systems. For example, operational partial cycling DA sys-
tems continuously cycle land surface states and only ingest
atmospheric fields from external models (e.g., Rogers et al.
2009; Hu et al. 2017; Wu et al. 2017). Conversely, some
research studies used external models to initialize their partial
cycling systems’ land surface states (e.g., Hsiao et al. 2012;
Johnson et al. 2015, 2020; Duda et al. 2019).

An additional complexity for ensemble-based partial cycling
is initial land surface state spread. As 6-h GDAS-EnKF forecast
perturbations of land surface variables were extremely small
(e.g., Gehne et al. 2019), all 80 ensemble members in PC12z

were effectively initialized with identical GFS analysis land sur-
face states at 1200 UTC. We believe this approach is satisfac-
tory, as we surmised that top-level soil states would quickly
adjust to diverse atmospheric forcings during self-contained DA
cycles and expected initial atmospheric fields to impact EnKF

analyses and subsequent forecasts more than initial land surface
states. However, to both ensure that this method did not need-
lessly harm PC12z and test our hypotheses, an additional experi-
ment was performed. This new experiment was identical to
PC12z, except initial land surface states for the 80 members were
taken from continuously cycling EnKF (i.e., CCEnKF) members’
land surface states at 1200 UTC each day, meaning diverse ini-
tial land surface states reflecting the continuously cycling
EnKF’s land surface climate (“PC12z_soil”; Table 3). As
described in the appendix, although PC12z and PC12z_soil had dif-
ferent 0000 UTC soil moisture characteristics, aggregate precipi-
tation forecast skill was insensitive to land surface state
initialization in the partial cycling EnKFs.

4) INITIAL MICROPHYSICS STATES

Like land surface states, microphysics initialization also
requires consideration in partial cycling DA systems. During
our experimental period (April–May 2017), NCEP’s GDAS
employed the Zhao and Carr (1997) microphysics scheme,
which only produces total cloud ice and cloud water and is
incompatible with the Thompson et al. (2008) microphysics
scheme (Table 1) that predicts five liquid and ice species.
Thus, using GFS and GDAS-EnKF fields to initialize micro-
physics variables in the partial cycling EnKFs was not possible,
and rather than borrowing microphysics states from the continu-
ously cycling EnKF (analogously to how PC12z_soil borrowed
land surface states from CCEnKF), we simply set initial micro-
physics variables to zero in all ensemble members and expected

FIG. 3. Perturbation inflation factor as a function of model level
(level 1 is nearest the ground). These inflation factors were applied
to perturbations derived from 6-h GDAS-EnKF forecasts during
partial cycling EnKF initialization. The approximate pressure
(hPa) at each model level is given on the right axis.

FIG. 4. Amplitude response (y axis) of a sixth-order implicit tan-
gent filter as a function of wavelength (km) for a specified cutoff
length of 960 km. In the context of this study, the curve denotes
the contribution of GEFS ICs to blended ICs at a given wavelength
(e.g., for wavelengths where the amplitude response is 1.0, 100% of
the blended ICs at those wavelengths were from the GEFS). The
dashed vertical and solid horizontal lines illustrate how the ampli-
tude response is 0.5 at the specified cutoff length.
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microphysics fields to rapidly adjust to dynamic and thermody-
namic states during the self-contained cycling period.

d. Blended ICs

An alternative to partial cycling for introducing external
(i.e., global) fields into limited-area DA systems is a “blending”
approach, where large scales from a global model are combined
with small scales from a limited-area analysis, which can improve

subsequent limited-area forecasts (e.g., Yang 2005; H.Wang et al.
2014; Y. Wang et al. 2014; Hsiao et al. 2015; Zhang et al. 2015;
Keresturi et al. 2019; Feng et al. 2020; S21). Our blending meth-
odology was thoroughly detailed in section 2d of S21, so only a
short description follows.

Specifically, new 10-member IC ensembles were created daily
at 0000 UTC between 25 April and 20 May 2017 (inclusive) by
blending small scales from members 1–10 of continuously cycling

FIG. 5. Ensemble mean additive bias (model minus observations; short-dashed lines) and RMSE (solid lines) compared to (a)–(c) air-
craft zonal wind (m s21), (d)–(f) aircraft temperature (K), (g)–(i) aircraft relative humidity (%), and (j),(k) rawinsonde relative humidity
(%) observations aggregated over all prior ensembles valid at (left) 0600, (center) 1200, and (right) 0000 UTC between 0600 UTC 24 Apr
and 0000 UTC 20 May 2017 (inclusive). The priors were 1-h forecasts except for PC06z and PC12z at 0600 and 1200 UTC, respectively,
where prior ensemble mean statistics quantified GFS analysis fits to observations. Sample size at each pressure level is shown at the right
of each panel. Vertical lines at x 5 0 are references for biases. Circles on the PC12z and PC06z curves denote instances where differences
between CCEnKF and PC12z and differences between CCEnKF and PC06z were statistically significant at the 95% level; open circles indicate
PC12z or PC06z had statistically significantly better scores than CCEnKF, while filled circles indicate CCEnKF had statistically significantly
better scores. Absence of a circle means differences were not statistically significant at the 95% level. Note that x-axis values differ in
each row.
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FIG. 6. Average standard deviation over land points within the portion of the 15-km domain collocated with the 3-km domain (Fig. 1)
and all posterior ensembles between 0600 UTC 24 Apr and 0000 UTC 20 May 2017 (inclusive) at 0000 UTC (solid lines), 1200 UTC (long-
dashed lines), and 0600 UTC (short-dashed lines) for (a) zonal wind (m s21), (b) temperature (K), (c) water vapor mixing ratio (qy; g
kg21), (d) rain mixing ratio (qrain; g kg

21), (e) snow mixing ratio (qsnow; g kg
21), and (f) graupel mixing ratio (qgraupel; g kg

21). Open circles
denote those curves representing GFS/GDAS-EnKF statistics (i.e., PC06z and PC12z at 0600 and 1200 UTC, respectively). Annotations in
(a) and (b) indicate how partial cycling EnKF statistics changed with time. (g)–(i) As in (d)–(f), but for domain-average means. In (d)–(i),
open circles at x 5 0 reflect how the partial cycling EnKFs had no hydrometeors at initialization. Note that x-axis values are different in
each panel.
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EnKF analysis ensembles with large scales from corresponding
members 1–10 of 0.58 GEFS IC ensembles using a low-pass,
sixth-order implicit tangent filter (e.g., Raymond 1988; Raymond
and Garder 1991), similar to several studies (e.g., Yang 2005;
H. Wang et al. 2014; Hsiao et al. 2015; Feng et al. 2020; S21).
This filter requires a specified cutoff, which, within the context

of this work, represents the spatial scale (wavelength) where
blended ICs had equal contributions fromGEFS and continuously
cycling EnKF initial states. S21 noted that ICs produced by blend-
ing GEFS ICs and 3-km EnKF analyses with a 960-km cutoff
yielded slightly better CAE forecasts compared to using 640- and
1280-km cutoffs. Thus, we used a 960-km cutoff (Fig. 4).

FIG. 7. Spectra for differences between GFS analyses and ensemble mean initial states for various experiments
(see legend) as a function of wavelength (km) for (a) 850-hPa zonal wind (m2 s22), (b) 500-hPa zonal wind (m2 s22),
(c) 850-hPa temperature (K2), (d) 500-hPa temperature (K2), (e) 850-hPa water vapor mixing ratio (kg2 kg22), and
(f) 500-hPa water vapor mixing ratio (kg2 kg22), averaged over all 0000 UTC analyses between 25 Apr and 20 May
2017 (inclusive). The spectra were computed over the entire 15-km domain, excluding the 10 grid points nearest each
lateral boundary, using the discrete cosine transform, and spectral variance binning employed the method of Ricard
et al. (2013). Note that y-axis values are different in each panel.

WEATHER AND FORECAS T ING VOLUME 3794

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:45 PM UTC



The 0000 UTC blended states initialized 36-h, 10-member
CAE forecasts like unblended EnKF analysis ensembles
(“CCEnKF_blend”; Table 3). Blending did not impact the con-
tinuously cycling EnKF itself, as blended ICs were solely used
for purposes of CAE initialization and not incorporated into
EnKF DA cycles. However, Feng et al. (2021) found that
incorporating blending into 3DVAR DA cycles improved
deterministic forecasts over China, and future work may
assess whether integrating blending within continuous EnKF
DA cycles is beneficial for CAE forecast initialization over
the CONUS.

e. Benchmark ensemble

Finally, as in S21, 36-h CAE forecasts were initialized by
interpolating 0.58 ICs from members 1–10 of NCEP’s opera-
tional GEFS (Zhou et al. 2017) onto the nested computa-
tional domain (Fig. 1) daily at 0000 UTC between 25 April
and 20 May 2017 (inclusive). These GEFS-initialized CAE
forecasts (Table 3) used identical WRF Model configurations
and LBCs as the EnKF-initialized CAE forecasts and served
as a benchmark to assess whether experimental limited-area
EnKF analyses could initialize better CAE forecasts than
operational ICs. Unlike the other ICs that had nonzero
hydrometeor fields at 0000 UTC, GEFS-initialized forecasts
began without hydrometeors, so a long spinup was expected.

4. Partial and continuously cycling EnKF characteristics

While the continuously cycling EnKF (i.e., CCEnKF)
required two days to spin up from random noise, it was
unclear how quickly the partial cycling EnKFs would move
away from their flow-dependent GFS/GDAS-EnKF initial
states and adjust to the WRF Model climate. Because 0000
UTC analyses initialized CAE forecasts, we wanted to under-
stand properties of 0000 UTC partial cycling EnKF states, in
particular, whether they resembled 0000 UTC CCEnKF states
or retained characteristics of their prescribed initial GFS/
GDAS-EnKF states from 12 or 18 h earlier.

Thus, the following analyses were performed to elucidate
the composition of 0000 UTC partial cycling EnKF states
and their similarities with 0000 UTC CCEnKF states. These
analyses are also offered as evidence that partial cycling
EnKF performance was acceptable given several subjective
configuration choices (section 3c). As partial cycling EnKF
spinup can largely be controlled through DA parameters
like observation errors, the following statistics were purely
diagnostic, and ultimately, we hoped to relate differences
between various sets of 0000 UTC-initialized CAE forecasts
to differences between their ICs.

a. Observation-space diagnostics

Prior ensemble mean additive biases (model minus obser-
vations) and root-mean-square errors (RMSEs) were com-
puted with respect to rawinsonde and aircraft observations,
the latter of which have particularly important influences
in hourly updated DA systems over the CONUS (James
and Benjamin 2017; James et al. 2020). Observation-space

ensemble spreads were also assessed but are not presented, as
state-space spreads yielded identical conclusions (section 4b).
Given the partial cycling initialization procedure (sections 3b
and 3c), PC06z and PC12z prior ensemble mean statistics at
0600 and 1200 UTC, respectively, quantified GFS analysis fits
to observations, whereas PC06z and PC12z prior ensemble
mean statistics at later hours (during self-contained cycling)
measured how the partial cycling EnKFs were adjusting
toward the WRF Model climate. Statistical significance of
aggregate statistics at the 95% confidence level was assessed
with a bootstrap resampling approach using 10 000 resamples
(with replacement) applied to pairwise differences between
two experiments (e.g., Hamill 1999; Wolff et al. 2014).

Compared to continuously cycling EnKF (i.e., CCEnKF)
prior ensemble means, GFS analyses more closely fit zonal
wind and relative humidity (RH) observations3 and were
drier at most levels (cf. orange and purple lines in Figs. 5a,g
and green and purple lines in Figs. 5b,h,j). Additionally, GFS
analyses had significantly smaller 925–400-hPa RMSEs com-
pared to temperature observations than CCEnKF prior ensem-
ble means at 1200 UTC (Fig. 5e), but not at 0600 UTC
(Fig. 5d). However, at both 0600 and 1200 UTC, GFS analy-
ses had significant cold biases (Figs. 5d,e), possibly due to
GFS physics errors (e.g., Zheng et al. 2017). GFS analyses
also had cold biases compared to rawinsonde observations
between 925 and 300 hPa (not shown).

As self-contained cycles progressed, prior ensemble mean
biases and RMSEs in the partial cycling EnKFs generally
became more similar to those of CCEnKF at most levels, sug-
gesting the partial cycling EnKFs were behaving properly.
For example, differences of zonal wind RMSEs and tempera-
ture biases between CCEnKF and PC06z decreased going from
0600 to 1200 to 0000 UTC (Figs. 5a–f), indicating PC06z was
moving away from GFS analyses. However, small, but often
statistically significant, differences between the partial and
continuously cycling EnKFs remained at 0000 UTC regarding
temperature and zonal wind RMSEs (∼0.01 K and ∼0.01–
0.05 m s21 differences), which were lower in the partial
cycling EnKFs.

Compared to zonal wind and temperature, RH adjustments
appeared smaller, especially according to biases, which indi-
cated 0000 UTC partial cycling EnKF prior ensemble means
were regularly statistically significantly drier than CCEnKF

(Figs. 5i,k). This finding suggests that moisture fields had not
fully moved away from GFS/GDAS-EnKF states assigned at
partial cycling EnKF initialization even after 18 h of self-con-
tained cycles.

b. State-space characteristics

State-space characteristics were also assessed to explore
partial cycling EnKF evolution. Regarding ensemble spread,

3 Evaluating continuously cycling EnKF posterior ensemble
means lessens these differences. However, because GFS analyses
indeed served as prior ensemble means for partial cycling EnKF
initialization, comparing GFS analyses to continuously cycling
EnKF prior ensemble means is the relevant comparison.
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inflated 6-h GDAS-EnKF forecasts (i.e., PC06z and PC12z at
0600 and 1200 UTC, respectively) had lower domain-average
standard deviations4 than CCEnKF for zonal wind, tempera-
ture, and water vapor mixing ratio above 600 hPa and higher
standard deviations below (cf. purple and circular-marked
dashed curves in Figs. 6a–c), reflecting initial variance infla-
tion (Fig. 3). While patterns were similar at 0000 UTC, differ-
ences between the partial and continuously cycling EnKFs

were smaller than at 0600 and 1200 UTC, indicating the
partial cycling EnKFs had moved away from their inflated
GFS/GDAS-EnKF initial states.

However, some noteworthy 0000 UTC differences remained.
For example, above 500 hPa, while PC06z had closer tempera-
ture and zonal wind spreads to CCEnKF than PC12z due to
greater adjustment afforded by an extra 6 h of self-contained
cycles (cf. solid lines in Figs. 6a,b), even 18 h of self-contained
cycles was not enough for PC06z spread to match the larger
CCEnKF spread, suggesting spinup was not complete. In addi-
tion, the partial cycling EnKFs had more moisture spread than
CCEnKF below 500 hPa (cf. solid lines in Fig. 6c). It is possible
that moisture spread did not adjust as much as temperature and
zonal wind spreads below 500 hPa in the partial cycling EnKFs

FIG. 8. Aggregate RMSDs between GFS and EnKF mean analyses [Eq. (1)] for (left) zonal wind (m s21), (center) temperature (K), and
(right) water vapor mixing ratio (g kg21) over all 0000 UTC analyses between 25 Apr and 20 May 2017 (inclusive) for (a)–(c) full fields,
(d)–(f) bandpass filtered fields for 200–500-km wavelengths, and (g)–(i) bandpass filtered fields for 1000–1500-km wavelengths. These sta-
tistics were computed over land points within the portion of the 15-km domain collocated with the 3-km domain. Statistically significant
differences between CCEnKF and PC12z and between CCEnKF and PC06z at the 95% level are denoted as in Fig. 5. Note that x-axis values
are different in each panel.

4 The continuously cycling EnKF had a stable climate with only
small diurnal spread variations, primarily in the planetary bound-
ary layer. Thus, to foster readability, CCEnKF domain-average
spread is only shown at 0000 UTC, as its spread was approximately
the same at 0600 and 1200 UTC.
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due to the relative scarcity of moisture observations to directly
constrain EnKF analyses (see sample sizes on Fig. 5), although
specific DA settings may also have played a role.

Despite initializing the partial cycling EnKFs without
hydrometeors, 0000 UTC domain-average standard devia-
tions (Figs. 6d–f) and means (Figs. 6g–i) of rain, snow, and
graupel mixing ratios in PC06z and PC12z were comparable to
or greater than those in the continuously cycling EnKF. These
findings confirm that microphysics variables quickly respond
to atmospheric states given our configurations and suggest

that initializing partial cycling EnKFs without hydrometeors
may be acceptable.

c. Spectral analysis

To examine how EnKF analyses represented different spatial
scales, power spectra were computed using the discrete cosine
transform (DCT; Denis et al. 2002). Power spectra of EnKF
analysis perturbations reflected conclusions from Fig. 6 (there
was typically more 0000 UTC perturbation power below 500 hPa
and less above in the partial cycling EnKFs compared to

FIG. 9. Normalized RMSD reductions [%; Eq. (2)] between CCEnKF and PC06z for (a) zonal wind, (b) temperature, and (c) water vapor
mixing ratio for various wavelength bands (km) and pressure levels (hPa) aggregated over all 0000 UTC analyses between 25 Apr and
20 May 2017 (inclusive). (d)–(f) As in (a)–(c), but for normalized RMSD reductions between CCEnKF and PC12z. Negative values indicate
RMSDs with respect to GFS analyses [Eq. (1)] were smaller in PC06z and PC12z compared to CCEnKF. Color bars and their ranges are differ-
ent in each panel. These statistics were computed over land points within the portion of the 15-km domain collocated with the 3-km domain.
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CCEnKF) and are not further discussed. Instead, we focus on
understanding how 0000 UTC partial and continuously cycling
EnKF mean analyses compared with global analyses across a
range of scales, as mean IC states exert a strong influence on
CAE forecast skill (e.g., Schwartz et al. 2020).

Specifically, power spectra of differences between EnKF mean
and GFS analyses were computed, which indicated 0000 UTC
partial cycling EnKF mean analyses more closely resembled
GFS analyses than continuously cycling EnKF mean analyses for
wavelengths . 200 km (Fig. 7). Moreover, the gap between dif-
ference spectra of the partial and continuously cycling EnKFs

typically widened as wavelength increased, especially for temper-
ature and moisture (Figs. 7c–f), suggesting the partial and contin-
uously cycling EnKFs differed more at larger scales than smaller
ones. For most scales . 1000 km, differences between the two
partial cycling EnKFs were smaller than their collective differ-
ences with respect to CCEnKF. Differences between GFS analy-
ses and GEFS mean initial states reflected the link between the
GFS and GEFS (Zhou et al. 2017) and were at least an order of
magnitude smaller than limited-area EnKF difference spectra for
scales . 200 km, and difference spectra of mean blended states
affirmed the blending procedure.

FIG. 10. FSSs over the CONUS east of 1058W (Fig. 1) with a 100-km neighborhood length scale for the (a) 90th, (b) 95th, (c) 97.5th,
(d) 99th, (e) 99.5th, and (f) 99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated precipitation as a function
of forecast hour. Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accu-
mulated precipitation between 23 and 24 h). The y-axis scales are different in each panel. Symbols along the top axis denote instances where
differences between two ensembles were statistically significant at the 95% level, with the six rows of colored symbols in each panel corre-
sponding to the six comparisons in the legend (from top to bottom) to denote which ensemble had statistically significantly higher FSSs. For
example, the top row of symbols in each panel compares CCEnKF and PC12z; purple symbols indicate CCEnKF had statistically significantly
higher FSSs than PC12z, while green symbols indicate PC12z had statistically significantly higher FSSs than CCEnKF (see Table 3 for descrip-
tions of the experiments). As another example, the bottom row of symbols in each panel compares PC12z and CCEnKF_blend; green symbols
indicate PC12z had statistically significantly higher FSSs than CCEnKF_blend, while blue symbols indicate CCEnKF_blend had statistically signifi-
cantly higher FSSs than PC12z. Absence of a symbol means the differences were not statistically significant at the 95% level.
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To further explore spectral differences, 0000 UTC GFS and
EnKF mean analyses were filtered within various wavelength
bands using the DCT and its inverse (e.g., Denis et al. 2002).
These bandpass filtered fields were then directly compared to
calculate root-mean-square differences (RMSDs) between
GFS and EnKF mean analyses as a function of spatial scale
using

RMSD 5

������������������������������������
1
N

∑N

k5 1

GFSk – EnKFk

( )2√√√
, (1)

where for the kth of N points, GFSk is the GFS analysis and
EnKFk the EnKF mean analysis for a particular experiment
(e.g., Table 3). Additionally, normalized reductions of RMSDs
between two experiments (D) were computed as

D 5
RMSDi – RMSDj

RMSDj
3 100%, (2)

where RMSDi and RMSDj are RMSDs of the ith and jth
experiments, respectively (Table 3). The termD is interpreted
as “relative to experiment j, experiment i had a D% smaller
or larger RMSD,” where D , 0 indicates experiment i had
the smaller RMSD (i.e., RMSDi , RMSDj) and was more
similar to GFS analyses than experiment j.

Corroborating Fig. 7 and generally consistent with Figs.
5c,f,i,k, 0000 UTC partial cycling EnKF mean analyses usually
had statistically significantly smaller aggregate RMSDs than
continuously cycling EnKF mean analyses for full fields (no
filtering; Figs. 8a–c) and in the 200–500- and 1000–1500-km
wavelength bands (Figs. 8d–i). RMSDs were smaller in the
1000–1500-km band than the 200–500-km band, indicating

FIG. 11. As in Fig. 10, but for areas under the ROC curve computed using decision thresholds of 1%, 2%, 3%, 4%, 5%, 10%, 15%, … ,
95%, and 100% and a trapezoidal method. Symbols along the top axis indicate forecast hours when differences between two ensembles
were statistically significant at the 95% level as in Fig. 10 and denote the ensemble with statistically significantly higher ROC areas.
The y-axis scales are different in each panel.
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EnKF mean and GFS analyses were more alike on larger, more
predic table scales. However, when letting RMSDi and RMSDj

represent aggregate 0000 UTC RMSDs of PC06z and CCEnKF,
respectively, D [Eq. (2)] typically became more negative as spa-
tial scale increased (Figs. 9a–c), especially for temperature and
moisture, for which PC06z had ∼10%–20% smaller RMSDs
than CCEnKF for many wavelengths $ 1000 km but RMSD
reductions of typically only ∼5% or less for scales , 1000 km
(Figs. 9b,c). Therefore, relative differences between PC06z and
CCEnKF generally grew as wavelength increased.

Collectively, Figs. 7–9 indicated PC06z and CCEnKF mean
analyses differed most at larger scales, where PC06z mean analy-
ses were closer to GFS analyses than CCEnKF mean analyses.
Thus, even after 18 h of self-contained cycles, PC06z had

“memory” of its most recent injection of GFS/GDAS-EnKF
fields, especially at large scales; PC12z unsurprisingly had an
even stronger memory of and was more similar to GFS/GDAS-
EnKF fields at 0000 UTC than PC06z (e.g., Figs. 7, 8; also com-
pare Figs. 9a–c and Figs. 9d–f). The next section shows how the
large-scale differences between partial and continuously cycling
EnKF ICs impacted subsequent CAE precipitation forecasts.

5. Precipitation forecast verification

a. Methods

Our precipitation verification methods were the same as in
S21, who in turn followed section 5a of Schwartz (2019), so
descriptions here are brief. Specifically, hourly accumulated

FIG. 12. Reliability diagrams computed over the CONUS east of 1058W (Fig. 1) with a 100-km neighborhood length scale aggregated
over all 26 1–12-h 3-km forecasts of 1-h accumulated precipitation for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th
percentile thresholds. Diagonal lines are lines of perfect reliability. Values were not plotted for a particular bin if fewer than 500 grid points
had forecast probabilities in that bin over the CONUS east of 1058W and all 26 forecasts. Symbols along the top axis indicate probability
bins where differences between two ensembles were statistically significant at the 95% level as in Fig. 10 and denote the ensemble with sta-
tistically significantly better reliability as determined by block bootstrapping. Note that the reliability diagrams themselves stop at 100%;
area above 100% was added to make room for statistical significance markers.
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precipitation forecasts were objectively compared to NCEP’s
Stage IV (ST4) analyses (Lin and Mitchell 2005) over the
CONUS east of 1058W (Fig. 1), where ST4 analyses were most
robust (e.g., Nelson et al. 2016). Some metrics were computed
from native 3-km output, while a budget algorithm (e.g., Acca-
dia et al. 2003) was used to interpolate precipitation forecasts to
the ∼4.763-km ST4 grid to compute metrics requiring a common
grid for forecasts and observations.

As in S21, event occurrence was determined using percentile
thresholds (e.g., the 95th percentile, which selects the top 5%
of events). This approach defines the same number of forecast
and observed events, thus, removing bias and permitting a
thorough assessment of spatial performance given a model’s
climate (e.g., Roberts and Lean 2008; Mittermaier and Roberts
2010; Dey et al. 2014; Woodhams et al. 2018; Schwartz 2019).
We used percentiles between 90% and 99.9% to verify both
broad precipitation features and localized, intense events.

Additionally, because convection-allowing models are inher-
ently inaccurate at the grid-scale, a “neighborhood approach”

(e.g., Theis et al. 2005; Ebert 2008, 2009) was applied to derive
“neighborhood ensemble probabilities” (NEPs; Schwartz et al.
2010; Schwartz and Sobash 2017), which are smoothed ensemble
probabilities within a designated neighborhood length scale (r)
and more appropriate for verifying CAEs than point-based proba-
bilities. Values of r between 5 and 150 km, which represented radii
of circular neighborhoods, were used to construct NEPs that were
ultimately verified. Pairwise difference bootstrapping was again
used to assess statistical significance, and when bootstrap confi-
dence intervals were obtained for statistics aggregated over multi-
ple forecast hours, a circular block bootstrapping method (e.g.,
Politis and Romano 1992; Wilks 1997; Gilleland et al. 2018) was
used with a 4-h block length to preserve autocorrelations.

b. Results

1) FRACTIONS SKILL SCORES AND ROC AREAS

To assess spatial skill, fractions skill scores (FSSs; Roberts
and Lean 2008) and areas under the relative operating

FIG. 13. As in Fig. 12, but statistics were aggregated over all 26 24–36-h 3-km forecasts of 1-h accumulated precipitation.
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characteristic (ROC) curve (Mason 1982; Mason and Graham
2002) were calculated. FSSs and ROC areas range between 0
and 1, with higher values indicating more skill. We present
FSSs and ROC areas for NEPs computed with r 5 100 km;
overall conclusions were identical when using different neigh-
borhood length scales. Relative differences of FSSs and ROC
areas between CAE forecasts with partial and continuously
cycling EnKF ICs did not systematically change throughout
the experimental period, so we focus on aggregate statistics
over all 26 3-km forecasts.

Through ∼18 h, GEFS-initialized CAE forecasts were typi-
cally worst (Figs. 10, 11) and the ensembles with blended and
unblended continuously cycling EnKF ICs (i.e., CCEnKF and
CCEnKF_blend) had similar FSSs and ROC areas that were usu-
ally comparable to or somewhat higher than those from PC06z,
which in turn generally had better scores than PC12z. Although
these findings suggest ICs that are more spun up (e.g., Figs. 5, 6)
are beneficial for ∼1–18-h forecasts, differences between PC06z,
PC12z, CCEnKF, and CCEnKF_blend were only occasionally statisti-
cally significant. This broad similarity was consistent with the
relatively small differences between partial and continuously

cycling EnKF ICs at small scales (Figs. 7, 9), which are impor-
tant for short-term forecast evolution. In sum, FSSs and ROC
areas indicated no benefits of partial cycling over continuous
cycling for short-term (∼1–18-h) CAE forecasts.

Conversely, after ∼18 h, when large-scale ICs exert greater
forecast impacts, unblended continuously cycling EnKF anal-
yses initialized CAE forecasts that were comparable to or
worse than those with GEFS or partial cycling EnKF ICs
(Figs. 10, 11). The biggest degradations of CCEnKF relative to
ensembles with partial cycling ICs occurred after ∼27 h,
where some differences were statistically significant (Figs.
10a,b, 11a–d). However, blended ICs yielded next-day
(∼18–36-h) CAE forecasts that were typically better than
those with unblended EnKF ICs and statistically indistin-
guishable from forecasts with partial cycling EnKF ICs.

These findings indicate limited-area EnKF ICs produced
better ∼18–36-h forecasts when they had memory of GFS
large scales through partial cycling or were explicitly linked to
GFS large scales through blending. However, closeness to
large-scale GFS analyses alone did not determine next-day
forecast quality: for example, blended ICs were much closer

FIG. 14. Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding (a) 1.0, (b) 2.5, (c) 5.0, (d) 10.0,
(e) 25.0, and (f) 50.0 mm h21 over the CONUS east of 1058W (Fig. 1), computed on native grids and aggregated over all 26 3-km forecasts
as a function of forecast hour. These statistics were computed for all 10 ensemble members, but for readability, only ensemble mean areal
coverages are shown. At the earliest forecast hours, mean GEFS areal coverages were nonzero but below the x axis for some thresholds.
Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipi-
tation between 23 and 24 h). The y-axis scales are different in each panel.
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to large-scale GFS analyses than partial cycling EnKF analy-
ses (Fig. 7), yet ∼18–36-h forecasts with blended ICs were not
systematically better than those with partial cycling EnKF
ICs. Thus, although ICs too far from GFS analysis large scales
clearly seem to degrade next-day forecasts, controls on
∼18–36-h forecast quality appear complex.

2) RELIABILITY STATISTICS

Reliability statistics (e.g., Wilks 2011) computed with r 5

100 km aggregated over all 26 3-km forecasts revealed 1–12-h
probabilistic precipitation forecasts with blended and unblended
continuously cycling EnKF ICs typically had comparable reli-
abilities to those initialized from partial cycling EnKF analyses
(Fig. 12). All EnKF-initialized forecasts were more reliable than
GEFS-initialized forecasts over the first 12 h.

For 24–36-h forecasts, while there were a few probability bins
where unblended continuously cycling EnKF ICs yielded similar
or better reliability compared to partial cycling EnKF ICs (Fig.
13), partial cycling EnKF ICs led to statistically significantly
more reliable forecasts than unblended continuously cycling
EnKF ICs in many bins, especially for probabilities , 55% at
the 90.0th–97.5th percentiles (Figs. 13a–c). Blended ICs typically
provided comparable 24–36-h forecast reliability as ICs from the
two partial cycling EnKFs, which usually had similar reliabilities
at both forecast ranges (Figs. 12, 13). Differences regarding prob-
abilistic forecast distributions (i.e., sharpness) between the vari-
ous CAEs were not noteworthy (not shown).

Like FSSs and ROC areas, reliability statistics indicated
both that short-term CAE forecasts did not benefit from par-
tial cycling and that ICs with large-scale spectral characteristics
with memory of or forced to those of GFS analyses improved
24–36-h forecasts. Reliability statistics computed over just the
24–30- and 30–36-h forecast periods yielded identical conclu-
sions as the 24–36-h aggregate statistics (not shown).

3) PRECIPITATION CLIMATOLOGIES

Aggregate areal coverages of 1-h accumulated precipitation
meeting or exceeding various thresholds (e.g., 5.0 mm h21)
were calculated to examine precipitation distributions. At all
thresholds, ensembles with partial cycling EnKF ICs had lower
mean areal coverages than the ensemble with unblended con-
tinuously cycling EnKF ICs over the first 12 h (Fig. 14). These
lower 1–12-h forecast coverages in PC06z and PC12z were fur-
ther from observed coverages than CCEnKF for thresholds #

2.5 mm h21 (Figs. 14a,b) but closer to observations than
CCEnKF at higher thresholds (Figs. 14c–f). Relative to CCEnKF,
aside from the first 6 h at the 1.0 mm h21 threshold, blended
ICs yielded lower coverages. GEFS-initialized forecasts usually
had areal coverages furthest from observations over the first
6 h due to spin up from their coarse (0.58) ICs.

Commensurate with areal coverages, partial cycling EnKF ICs
yielded less domain-total precipitation than blended and
unblended continuously cycling EnKF ICs before 12 h, and these
lower amounts agreed best with observations (Fig. 15). Lower
total precipitation and areal coverages in PC06z and PC12z rela-
tive to CCEnKF through 12 h was consistent with drier 0000 UTC
PC06z and PC12z states compared to CCEnKF (Figs. 5i,k).

Differences between the CAEs generally diminished after
12 h, where all ensembles accurately captured timing of the
observed diurnal maximum, underpredicted peak coverages
for thresholds # 2.5 mm h21 (Figs. 14a,b), and overpredicted
both areal coverages$ 10.0 mm h21 and domain-total precip-
itation (Figs. 14d–f, 15). Overall, considering the entire fore-
cast period, the partial and continuously cycling EnKFs had
their strengths and weaknesses, and no ensemble had a clearly
superior precipitation climatology.

6. Summary and conclusions

Several EnKF DA experiments with 80 members and 15-km
horizontal grid spacing were performed over a computational
domain spanning the CONUS for a 4-week period. These
EnKFs were configured identically except for cycling procedure:
one EnKF employed continuous cycling, while the others used
a partial cycling methodology where limited-area analyses were
discarded after 12 or 18 h of self-contained cycles and reinitial-
ized from global model fields the next day. Posterior 0000 UTC
ensembles from all EnKFs initialized 36-h, 3-km, 10-member
CAE forecasts that were evaluated with a focus on precipita-
tion. Additionally, CAE forecasts were initialized from both
GEFS ICs and “blended” states constructed by combining small
scales from continuously cycling EnKF analyses with large
scales from GEFS ICs using a low-pass filter.

FIG. 15. Average 1-h accumulated precipitation (mm) per grid
point over all 26 3-km forecasts and the CONUS east of 1058W
(Fig. 1), computed on native grids as a function of forecast hour.
Shadings represent envelopes of the 10 members composing the
various ensembles indicated in the legend, and darker shadings rep-
resent intersections of two or more ensemble envelopes. Values on
the x axis represent ending forecast hours of 1-h accumulation peri-
ods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation
between 23 and 24 h). At the earliest forecast hours, GEFS
domain-total precipitation was nonzero but below the x axis.
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Through ∼18 h, all EnKF-initialized forecasts outperformed
GEFS-initialized forecasts, consistent with S21 and indicating that
limited-area EnKFs can initialize better short-term CAE forecasts
than global ICs. In addition, ∼1–18-h forecasts with blended and
unblended continuously cycling EnKF ICs were comparable to or
better than those with partial cycling EnKF ICs. These results
suggest continuously cycling EnKFs hold promise for short-term
CAE forecast applications, for which partial cycling does not
obviously represent a superior initialization approach.

Conversely, partial cycling EnKF analyses and GEFS ICs
yielded ∼18–36-h precipitation forecasts comparable to or better
than those with unblended continuously cycling EnKF ICs,
although improvements were only sometimes statistically signifi-
cant. However, blended ICs produced comparable quality
∼18–36-h forecasts as partial cycling EnKF ICs. Therefore,
blending appears to be a simple way of improving ∼18–36-h
CAE forecasts initialized from continuously cycling EnKFs, cor-
roborating S21 and suggesting that blending may be a viable
alternative to partial cycling initialization for next-day CAE fore-
cast systems. Moreover, there may be opportunities to improve
blending methodologies to ameliorate issues regarding balance
(e.g., S21) and physical inconsistencies that could potentially arise
if corresponding limited-area and global fields greatly differ.

Benefits of ∼18–36-h forecasts engendered by partial
cycling EnKF and blended ICs were associated with large-
scale spectral characteristics of blended and partial cycling
EnKF ICs more closely resembling those of GFS analyses
than unblended continuously cycling EnKF ICs. These find-
ings suggest that limited-area ICs should strive to emulate
large-scale characteristics of global models to initialize the
best possible next-day forecasts, which are more influenced
by large-scale flows than shorter-term forecasts.

Precisely why the limited-area continuously cycling EnKF had
difficulty achieving large-scale characteristics of global analyses is
unclear and should be examined in future studies, with the ulti-
mate goal of improving large-scale continuously cycling EnKF
analyses such that blending is no longer needed. However, lateral
boundaries place an inherent limit on the longest resolvable
waves, which may fundamentally constrain ability of limited-area
continuously cycling DA systems to accurately depict and predict
large-scale features. Insights about this potential limitation may
be provided by experimenting with limited-area continuously
cycling DA systems over progressively larger domains to assess
whether longwave characteristics eventually attain those of
global analyses. Furthermore, while the RRFS and other future
CAEs over the CONUS will likely have finer-resolution ICs
than our 15-km analyses, solely increasing analysis resolution is
unlikely to recover large-scale characteristics of global analyses,
and we suspect our overall conclusions about partial versus con-
tinuous cycling would hold in both higher and lower resolution
DA systems with similar domain sizes. Nonetheless, further
work is needed to confirm this hypothesis.

Partial cycling EnKFs can likely be improved, perhaps by care-
fully specifying initial spread on a per-variable basis and tuning
DA parameters. Additionally, other partial cycling methodolo-
gies might be explored; as opposed to our method of periodically
restarting entire ensembles from external (i.e., global) fields, per-
turbations derived from continuously cycling EnKFs could be

periodically recentered about externally provided central initial
states (e.g., Schwartz et al. 2020), thus propagating limited-area
ensembles indefinitely through time while still introducing exter-
nal information. Also, our overarching findings suggest an ideal
self-contained cycling length for CAE initialization may exist
where partial cycling states are sufficiently spun up yet retain suf-
ficiently strong memories of large-scale external model character-
istics, and further work could identify this optimum, which likely
depends on domain size and external model traits.

However, our findings instead provide justification for devot-
ing resources toward developing and improving continuously
cycling EnKFs over the CONUS for CAE initialization, rather
than investing in further partial cycling DA developments. In
fact, a combination of continuous cycling and blending may
altogether obviate the need for partial cycling, as continuously
cycling EnKF analyses both initialized short-term CAE fore-
casts comparable to or better than those initialized from partial
cycling EnKF analyses, and, when blended with GEFS ICs,
yielded next-day CAE forecasts usually statistically indistin-
guishable from those with ICs produced through partial cycling.
Thus, partial cycling systems can be replaced by continuously
cycling DA systems that incorporate blending without sacrific-
ing forecast quality at either short-term or next-day forecast
ranges. Accordingly, given that continuously cycling methodol-
ogies have numerous advantages compared to partial cycling
approaches and can streamline and accelerate model improve-
ment efforts, we suggest NCEP strongly consider adopting con-
tinuously cycling DA to initialize future operational limited-
area models over the CONUS like the RRFS.
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APPENDIX

Partial Cycling EnKF Sensitivity to Land Surface State
Initialization

Even though PC06z and PC12z were initialized without
soil state spread, they both had more domain-average top-
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layer soil temperature spread than CCEnKF at 0000 UTC
(Fig. A1a), indicating quick adjustments to diverse atmo-
spheric fields. Additionally, domain-average ensemble mean
top-layer soil temperatures in the partial and continuously
cycling EnKFs were similar by 0000 UTC (Fig. A1c). Con-
versely, although partial and continuously cycling EnKF
top-layer soil moistures became closer with time, 0000 UTC
soil moisture spread was ∼50%–75% lower in the partial
cycling EnKFs compared to the continuously cycling EnKF
(Fig. A1b), and top-layer soil moisture remained wetter in
the partial cycling EnKFs (Fig. A1d).

For domain-average ensemble mean top-layer soil tem-
perature and moisture, PC12z_soil paralleled CCEnKF (Figs.
A1c,d), which is sensible, as their 1200 UTC soil states
were identical. However, PC12z_soil spread quickly deviated
from CCEnKF spread and became larger by 0000 UTC (Figs.
A1a,b), suggesting top-layer soil state spread is sensitive to
low-level atmospheric spread and consistent with Figs. 6a–c,
which revealed low-level 1200 UTC atmospheric spread was
larger in PC12z (and PC12z_soil) compared to CCEnKF.

To assess whether the soil moisture differences impacted
precipitation forecasts, 0000 UTC analyses from PC12z_soil

FIG. A1. Standard deviation of top-layer (a) soil temperature (K) and (b) soil moisture (m3 m23) averaged over
land points within the portion of the 15-km domain collocated with the 3-km domain (Fig. 1) and all posterior ensem-
bles between 1200 UTC 24 Apr and 0000 UTC 20 May 2017 (inclusive) as a function of time of day. (c),(d) As in
(a) and (b), respectively, but for domain-average ensemble means.
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initialized 36-h, 10-member ensemble forecasts over the nested
domain (Fig. 1), but these forecasts were only produced
between 25 April and 7 May 2017 (inclusive) to save comput-
ing resources; differences between PC12z and PC12z_soil were
attributable to different 1200 UTC soil states, while differences
between PC12z_soil and CCEnKF were attributable to different
1200 UTC atmospheric fields. CAE forecasts were clearly
more sensitive to atmospheric ICs than initial soil states, as
FSS differences between PC12z_soil and CCEnKF were much
larger than those between PC12z and PC12z_soil (Fig. A2).
Therefore, differences between CAE forecasts initialized from
CCEnKF and PC12z were not due to different soil moistures.
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